蓝牙协议分析—BLE安全机制之白名单

1. 前言

在万物联网的时代,安全问题将会受到非常严峻的挑战(相应地,也会获得最大的关注度),因为我们身边的每一个IOT设备,都是一个处于封印状态的天眼,随时都有被开启的危险。想想下面的场景吧:

凌晨2点,x米手环的闹钟意外启动,将你从睡梦中惊醒,然后床头的灯光忽明忽暗……
你的心率、血压、睡眠质量等信息,默默地被竞争对手收集着,并通过大数据分析你的情绪、健康等,随时准备给你致命一击……
我知道你家里有几盏灯、几台电器、几个人,知道你几点睡觉几时醒来,知道你一周做过几顿饭,甚至知道你有一个xx棒、一周使用几次、每次使用多久……
……

算了,不罗列了,有时间的话可以建个iot eyes的站点,专门收集、整理物联网安全有关的内容。这里就先言归正传。

经过前面几篇的蓝牙协议分析,我们对蓝牙(特别是蓝牙低功耗)已经有了一个比较全面的了解。随后几篇文章,我会focus在BLE的安全机制上。毕竟,知己知彼,才能攻防有度。

话说,蓝牙SIG深知物联网安全的水有多深,因此使用了大量的篇幅,定义BLE安全有关的机制,甚至可以不夸张的说,BLE协议中内容最多、最难理解的部分,非安全机制莫属。本文先从介绍最简单的—-白名单机制(White list)。

2. 白名单机制

白名单(white list)是BLE协议中最简单、直白的一种安全机制。其原理很简单,总结如下(前面的分析文章中都有介绍):

所谓的白名单,就是一组蓝牙地址;
通过白名单,可以只允许特定的蓝牙设备(白名单中列出的)扫描(Scan)、连接(connect)我们,也可以只扫描、连接特定的蓝牙设备(白名单中列出的)。

例如,如果某个BLE设备,只需要被受信任的某几个设备扫描、连接,我们就可以把这些受信任设备的蓝牙地址加入到该设备的白名单中,这样就可以有效避免其它“流氓设备”的骚扰了。

不过呢,该机制只防君子不防小人,因为它是靠地址去过滤“流氓”的,如果有些资深流氓,伪装一下,将自己的设备地址修改为受信任设备的地址,那就惨了……

3. 白名单有关的HCI命令

注1:本文主要从HCI的角度分析、介绍,如非必要,不再会涉及HCI之下的BLE协议(后续的分析文章,也大抵如此)。

3.1 白名单维护相关的命令

BLE协议在HCI层定义了4个和白名单维护有关的命令,分别如下:

1)LE Read White List Size Command,获取controller可保存白名单设备的个数

该命令的格式为:

OCF Command parameters Return Parameters
0x000F Status
White_List_Size
Status,命令执行的结果,0为success。
White_List_Size,size,范围是1~255。

注2:由此可知,白名单是保存在controller中,由于size的范围是1~255,因此controller必须实现白名单功能(最少保存一个)。

2)LE Clear White List Command,将controller中的白名单清空

该命令的格式为:

OCF Command parameters Return Parameters
0x0010 Status
Status,命令执行的结果,0为success。

3)LE Add Device To White List Command,将指定的设备添加到白名单

该命令的格式为:

OCF Command parameters Return Parameters
0x0011 Address_type(1 byte)
Address(6 bytes)
Status
Address_type,设备的地址类型[1],0为Public Device Address,1为Random Device Address。
Address,设备的地址。
Status,命令执行的结果,0为success。

4)LE Remove Device From White List Command,将指定的设备从白名单中移除的命令

该命令的格式为:

OCF Command parameters Return Parameters
0x0012 Address_type(1 byte)
Address(6 bytes)
Status
Address_type,设备的地址类型[1],0为Public Device Address,1为Random Device Address。

Address,设备的地址。

Status,命令执行的结果,0为success。

最后需要说明的是,当controller处于以下三个状态的时候,以上命令除“LE Read Resolving List Size Command”外,均不能执行:

正在advertising;
正在scanning;
正在connecting。

3.2 白名单使用策略有关的命令

BLE设备在发起Advertising、Scanning或者Connecting操作的时候,可以通过Set Advertising Parameters、Set Scan Parameters或者LE Create Connection Command,设置Advertising、Scanning或者Connecting的过滤策略(Filter_Policy),具体如下:

1)Advertising时的白名单策略

LE Set Advertising Parameters Command的命令格式为:

OCF Command parameters Return Parameters
0x0006
Advertising_Filter_Policy(1 byte)
Status

该命令的其它参数请参考[2],Advertising_Filter_Policy的含义如下:

0x00,禁用白名单机制,允许任何设备连接和扫描。
0x01,允许任何设备连接,但只允许白名单中的设备扫描(scan data中有敏感信息?)。
0x02,允许任何设备扫描,但只允许白名单中的设备连接。
0x03,只允许白名单中的设备扫描和连接。

2)Scanning时的白名单策略

LE Set Scan Parameters Command的命令格式为:

OCF Command parameters Return Parameters
0x000B
Scanning_Filter_Policy(1 byte)
Status

该命令的其它参数请参考[2],Scanning_Filter_Policy的含义如下:

0x00,禁用白名单机制,接受所有的广播包(除了那些不是给我的directed advertising packets)。
0x01,只接受在白名单中的那些设备发送的广播包(除了那些不是给我的directed advertising packets)。
0x02,和白名单无关,不再介绍。
0x03,接受如下的广播包:在白名单中的那些设备发送的广播包;广播者地址为resolvable private address的directed advertising packets;给我的给我的directed advertising packets。

注3:Scanning时的白名单策略有点奇怪,既然是主动发起的,要白名单的意义就不大了吧?难道只为了减少host的响应耗电?

3)Connecting时的白名单策略

LE Create Connection Command的命令格式为:

OCF Command parameters Return Parameters
0x000D
Initiator_Filter_Policy(1 byte)
Status

该命令的其它参数请参考[4],Initiator_Filter_Policy的含义如下:

0x00,禁用白名单机制,使用Peer_Address_Type and Peer_Address指定需要连接的设备。
0x01,连接那些在白名单中的设备,不需要提供Peer_Address_Type and Peer_Address参数。

4. 使用示例

4.1 准备工作

后续的测试需要用到如下的设备和软件:

1)蓝牙设备A,作为Advertiser,发送广播数据,接受连接。

2)蓝牙设备B,作为Scanner,扫描设备A的广播数据,发起连接。

上述的1)和2)可以是如下一种:

一个具有bluez(hcitool等工具)的Android手机,可能需要较旧的android版本才行;
带有蓝牙功能的树莓派,允许Debian、Ubuntu等系统(只要不是Android就行);
Linux PC(或者虚拟机)加上一个具有BLE功能的蓝牙适配器。

3)bluez工具集,我们需要使用其中的hcitool命令。

4.2 相关的hcitool命令说明

hcitool中的一些命令,和白名单机制有关,总结如下。

1)hcitool lewlsz,获取controller白名单的size,对应3.1中的LE Read White List Size Command,该命令不需要参数,可直接使用,如下:

root@android:/ # hcitool lewlsz
hcitool lewlsz
White list size: 26

2)hcitool lewlclr,情况controller的白名单,对应3.1中的LE Clear White List Command,该命令也不需要参数,可直接使用,如下:

root@android:/ # hcitool lewlclr
hcitool lewlclr

3)hcitool lewladd,将指定设备添加到白名单中,对应3.1中的LE Add Device To White List Command,其格式如下:

root@android:/ # hcitool lewladd --help
hcitool lewladd --help
Usage:
lewladd [--random]

其中是必选项,为要添加的蓝牙设备的地址。地址有public和random两种,默认是public,如果需要添加random类型的地址,则要指定–random参数,例如:

root@android:/ # hcitool lewladd 22:22:21:CD:F4:58
hcitool lewladd 22:22:21:CD:F4:58

root@android:/ # hcitool lewladd --random 11:22:33:44:55:66
hcitool lewladd --random 11:22:33:44:55:66

4)hcitool lewlrm,将指定设备从白名单中移除,对应3.1中的LE Remove Device From White List Command,该命令只需要蓝牙地址作为参数,如下:

root@android:/ # hcitool lewlrm --help
hcitool lewlrm --help
Usage:
lewlrm

5)hcitool lecc,连接BLE设备的命令,对应3.2中的LE Create Connection Command,可以连接指定地址的设备,也可以直接连接白名单中的设备:

root@android:/ # hcitool lecc --help
hcitool lecc --help
Usage:
lecc [--random]
lecc --whitelist

一般情况下,我们都是通过hcitool lecc 的方式连接蓝牙设备,不过如果我们需要连接白名单中的设备,可直接使用如下命令:

hcitool lecc --whitelist

6)hcitool cmd,对于其它没有直接提供hcitool命令的HCI操作,我们可以使用hcitool cmd直接发送命令,其使用方法如下:

root@android:/ # hcitool cmd --help
hcitool cmd --help
Usage:
cmd [parameters]
Example:
cmd 0x03 0x0013 0xAA 0x0000BBCC 0xDDEE 0xFF

其中ogf、ocf和parameters可以去蓝牙spec的“HCI COMMANDS AND EVENTS”章节查询。需要注意的是,parameters可以使用各种类型(8位、16位、32位),还是很方便的。

4.3 测试步骤

这里仅仅罗列一个简单的测试,步骤包括:

1)设备A作为Advertising设备,不使用白名单,发送正常的ADV_IND(可连接、可扫描)广播包。
2)设备B扫描并连接设备A(应该可以正常连接)。
3)设备A作为Advertising设备,启用白名单,设置Advertising_Filter_Policy为0x2(只允许白名单中的设备连接),且没有把B的地址添加到白名单中。
4)设备B扫描并连接设备A(应该不可以正常连接)。
5)设备A把设备B添加到白名单中,其它策略保持不变。
6)设备B扫描并连接设备A(应该可以正常连接)。

详细步骤如下(我没有测试,有问题的请大家留言告诉我):
1)设备A作为Advertising设备,不使用白名单,发送正常的ADV_IND(可连接、可扫描)广播包。

# disable BLE advertising
hcitool cmd 0x08 0x000A 0x00

# 设置广播参数和广播策略
# Advertising_Interval_Min=0x0800 (1.28 second, default)
# Advertising_Interval_Max=0x0800 (1.28 second, default)
# Advertising_Type=0x00(ADV_IND, default)
# Own_Address_Type=0x00(Public Device Address, default)
# Peer_Address_Type=0x00(Public Device Address, default)
# Peer_Address=00 00 00 00 00 00 (no use)
# Advertising_Channel_Map=0x07(all channels enabled, Default)
# Advertising_Filter_Policy=0x0(禁用白名单)
hcitool -i hci0 cmd 0x08 0x0006 0x0800 0x0800 0x00 0x00 0x00 00 00 00 00 00 00 0x07 0x00

# enable BLE advertising
hcitool cmd 0x08 0x000A 0x01

# set advertising data to Eddystone UUID(可参考[3]中的介绍)
hcitool -i hci0 cmd 0x08 0x0008 1e 02 01 06 03 03 aa fe 17 16 aa fe 00 -10 00 01 02 03 04 05 06 07 08 09 0a 0b 0e 0f 00 00 00 00

2)设备B扫描并连接设备A(应该可以正常连接)。

hcitool lescan
hcitool lecc [bdaddr of A]

3)设备A作为Advertising设备,启用白名单,设置Advertising_Filter_Policy为0x2(只允许白名单中的设备连接),且没有把B的地址添加到白名单中。

# disable BLE advertising
hcitool cmd 0x08 0x000A 0x00

# 设置广播参数和广播策略
# …
# Advertising_Filter_Policy=0x2(只允许白名单中的设备连接)
hcitool -i hci0 cmd 0x08 0x0006 0x0800 0x0800 0x00 0x00 0x00 00 00 00 00 00 00 0x07 0x02

# 清空白名单
hcitool lewlclr

# 随便加一个地址到白名单
hcitool lewladd 11:22:33:44:55:66
# enable BLE advertising
hcitool cmd 0x08 0x000A 0x01

# set advertising data to Eddystone UUID(可参考[3]中的介绍)
hcitool -i hci0 cmd 0x08 0x0008 1e 02 01 06 03 03 aa fe 17 16 aa fe 00 -10 00 01 02 03 04 05 06 07 08 09 0a 0b 0e 0f 00 00 00 00

4)设备B扫描并连接设备A(应该不可以正常连接)。

hcitool lescan
hcitool lecc [bdaddr of A]

5)设备A把设备B添加到白名单中,其它策略保持不变。

# disable BLE advertising
hcitool cmd 0x08 0x000A 0x00

# 设置广播参数和广播策略
# …
# Advertising_Filter_Policy=0x2(只允许白名单中的设备连接)
hcitool -i hci0 cmd 0x08 0x0006 0x0800 0x0800 0x00 0x00 0x00 00 00 00 00 00 00 0x07 0x02

# 将B添加到白名单中
hcitool lewladd [bdaddr of B]
# enable BLE advertising
hcitool cmd 0x08 0x000A 0x01

# set advertising data to Eddystone UUID(可参考[3]中的介绍)
hcitool -i hci0 cmd 0x08 0x0008 1e 02 01 06 03 03 aa fe 17 16 aa fe 00 -10 00 01 02 03 04 05 06 07 08 09 0a 0b 0e 0f 00 00 00 00

6)设备B扫描并连接设备A(应该可以正常连接)。

hcitool lescan
hcitool lecc [bdaddr of A]

5. BLE安全机制之LL Privacy

在上文中介绍了BLE的白名单机制,这是一种通过地址进行简单的访问控制的安全机制。同时我们也提到了,这种安全机制只防君子,不防小人,试想这样一种场景:

A设备表示只信任B、C、D设备,因此就把它们的地址加入到了自己的白名单中,表示只愿意和它们沟通。与此同时,E设备对它们的沟通非常感兴趣,但A对自己不信任啊,肿么办?
E眼珠子一转,想出一个坏主意:把自己的地址伪装成成B、C、D中任意一个(这个还是很容易办到的,随便扫描一下就得它们的地址了)就行了,嘿嘿嘿!

那么问题来了,怎么摆脱“小人E“的偷听呢?不着急,我们还有手段:“链路层的Privacy(隐私)机制”。

6. LL Privacy机制介绍

总结来说,LL Privacy机制是白名单(white list)机制的进阶和加强,它在白名单的基础上,将设备地址转变成Private addresses[2]地址,以降低“小人E“窃得设备地址进而进行伪装的概率。

从白名单的角度看,Non-resolvable private address和Public Device Address/Static Device Address没有任何区别,因此LL Privacy机制主要指Resolvable Private Addresses。因此,LL Privacy机制的本质是:

通过Resolvable Private Addresses,将在空中传输的设备地址加密,让“小人E”无法窃得,从而增加其伪装的难度。

注1:当然,LL Privacy机制可以脱离白名单机制单独使用,不过这样的话好像没什么威力。

注2:有关Resolvable Private Addresses、Identity Address、IRK(Local/Peer IRK)等概念的详细介绍,可参考“蓝牙协议分析(6)_BLE地址类型[2]”,本文将会直接使用。

7. Resolving List

和白名单机制上的White List类似,如果设备需要使用LL Privacy机制,则需要在Controller端保存一个Resolving List,其思路为:

1)BLE设备要按照[1]中的介绍,配置并使能白名单机制,把那些受信任设备的地址(这里为Identity Address)加入到自己的白名单中,并采用合适的白名单策略。

2)如果设备需要使用LL Privacy策略,保护自己(以及对方)的地址不被窃取,则需要将自己(local)和对方(peer)的地址和加密key保存在一个称作Resolving List的列表中。

3)Resolving List的每一个条目,都保存了一对BLE设备的key/address信息,其格式为:Local IRK | Peer IRK | Peer Device Identity Address | Address Type。

Local IRK,本地的IRK,用于将本地设备的Identity Address转换为Resolvable Private Address。可以为0,表示本地地址直接使用Identity Address;
Peer IRK,对端的IRK,用于将对端设备的Resolvable Private Address解析回Identity Address。可以为零,表示对端地址是Identity Address;
Peer Device Identity Address、Address Type,对端设备的Identity Address及类型,用于和解析回的Identity Address进行比对。

4)Resolving List是Host通过HCI命令提供给Controller的,Controller的LL负责如下事项:

发送数据包[3]时:
如果有AdvA需要填充,则判断Resolving List是否有非0的Local IRK,如果有,则使用Local IRK将Identity Address加密为Resolvable Private Address,填充到AdvA中。否则,直接填充Identity Address;
同理,如果有InitA需要填充,则判断Resolving List是否有匹配的、非0的Peer IRK,如果有,则使用Peer IRK将对端的Identity Address加密为Resolvable Private Address,填充到InitA中。否则,直接填充Identity Address。

接收数据包时:
如果数据包中的AdvA或者InitA为普通的Identity Address,则直接做后续的处理;
如果它们为Resolvable Private Address,则会遍历Resolving List中所有的“IRK | Identity Address”条目,使用IRK解出Identity Address和条目中的对比,如果匹配,则地址解析成功,可以做进一步处理。如果不匹配,且使能了白名单/LL Privacy策略,则会直接丢弃。

5)需要重点说明的是,Controller和Host之间所有的事件交互(除了Resolving List操作之外),均使用Identity Address。也就是说,设备地址的加密、解密、比对等操作,都是在controller中完成的,对上层实体(HCI之上)是透明的。

8. 使用场景说明

结合上面2章的解释,罗列一下LL Privacy策略有关的使用场景(大部分翻译自蓝牙spec)。

8.1 设备处于广播状态(Advertising state)时

由[3]中的介绍可知,处于广播状态的BLE设备,根据需要可发送ADV_IND、ADV_DIRECT_IND、ADV_NONCONN_IND和ADV_SCAN_IND 4种类型的广播包,也就是说有4种不同的广播状态,它们的LL privacy策略有稍微的不同,下面分别描述。

1)ADV_IND

设备(Advertiser)发送ADV_IND时,其PDU(connectable undirected advertising event PDU)有一个AdvA字段,该字段的填充策略为(由controller的LL执行):

检查Resolving List,查看是否存在非0的Local IRK条目,如果有,则使用Local IRK将自己的Identity Address加密为Resolvable Private Addresses,并填充到AdvA中。否则,直接使用Identity Address。

Advertiser收到连接请求时,请求者的地址会包含在PDU的InitA中,该字段的解析策略为(由controller的LL执行):

如果InitA是Resolvable Private Addresses,且当前使能了地址解析功能,LL会遍历Resolving List中所有的“Peer IRK | Peer Device Identity Address | Address Type”条目,使用Peer IRK解析出Identity Address后和Peer Device Identity Address做比对,如果匹配,则解析成功,再基于具体的白名单策略,觉得是否接受连接;
如果解析不成功,则无法建立连接;
如果InitA不是Resolvable Private Addresses,则走正常的连接过程。

Advertiser收到扫描请求时,对ScanA的处理策略,和InitA类似。

2)ADV_DIRECT_IND

设备(Advertiser)发送ADV_DIRECT_IND 时,其PDU(connectable directed advertising event PDU)包含AdvA和InitA两个地址,它们填充策略为(由controller的LL执行):

检查Resolving List,查看是否存在非0的Local IRK条目,如果有,则使用Local IRK将自己的Identity Address加密为Resolvable Private Addresses,并填充到AdvA中。否则,直接使用Identity Address;
检查Resolving List,查看是否存在非0、和InitA的Identity Address匹配的Peer IRK条目,如果有,则使用Peer IRK将InitA的Identity Address加密为Resolvable Private Addresses,并填充到InitA中。否则,直接使用Identity Address。

Advertiser收到连接请求时,请求者的地址会包含在PDU的InitA中,该字段的解析策略为和上面ADV_IND类似,不再详细说明。

3)ADV_NONCONN_IND and ADV_SCAN_IND

这两个状态下,AdvA的填充策略和上面1)和2)一样,不再详细说明。

当Advertiser收到SCAN请求时,对ScanA的处理策略,和1)中InitA类似,不再详细说明。

8.2 设备处于扫描状态(Scanning state)时

处于Scanning状态的设备(Scanner)在接收到Advertiser发送的scannable的广播包时,需要按照4.1中解析InitA的方法,解析广播包中的AdvA,并根据当前的白名单策略,进行过滤。

Scanner发送scan请求时,需要指定ScanA和AdvA两个地址。其实ScanA的填充策略和4.1中的AdvA类似,不再详细说明。而AdvA,需要和接收到的广播包的AdvA完全一样,不能有改动。

8.3 设备处于连接状态(Initiating state)时

处于Initiating状态的设备(Initiator)在接收到Advertising发送的connectable的广播包时,需要按照4.1中解析InitA的方法,解析广播包中的AdvA,并根据当前的白名单策略,进行过滤。

同理,Initiator发送连接请求时,需要指定InitA和AdvA两个地址。其实InitA的填充策略和4.1中的AdvA类似,不再详细说明。而AdvA,需要和接收到的广播包的AdvA完全一样,不能有改动。

最后,Initiator在接收到Advertising发送的directed connectable广播包时,除了要解析AdvA,如果InitA是Resolvable Private Addresses,则需要使用Local IRK解析InitA。

 

 

9. 参考文档

[1] 蓝牙协议分析(6)_BLE地址类型

[2] 蓝牙协议分析(5)_BLE广播通信相关的技术分析

[3] 玩转BLE(1)_Eddystone beacon

[4] 蓝牙协议分析(7)_BLE连接有关的技术分析

[5] 蓝牙协议分析(8)_BLE安全机制之白名单

[6] 蓝牙协议分析(6)_BLE地址类型

[7] 蓝牙协议分析(5)_BLE广播通信相关的技术分析

[8] Core_v4.2.pdf

摘自:

蓝牙协议分析(8)_BLE安全机制之白名单

蓝牙协议分析(9)_BLE安全机制之LL Privacy

蓝牙协议分析(10)_BLE安全机制之LE Encryption

蓝牙协议分析(11)_BLE安全机制之SM

发表评论

电子邮件地址不会被公开。