非极大值抑制(Non-Maximum Suppression,NMS)

概述

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。通俗点讲就是把图片detect检测出的候选框(即每个框可能都代表某种物体)中互相重叠的部分进行去重,只保留最优的框。
NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。 阅读全文

小猪学arduino—使用esp8266WIFI模块实现双向通信

周末翻抽屉,发现一块n年前买的espduino板子,老实说其实当时是买错了,一直丢在那。今天刚好要在pc/pi上给arduino发指令,手上没有多余的esp8266模块,就拿这个板子来用吧,顺便把esp8266模块的使用方法整理一下。 阅读全文

DA需求识别解析—基于规则推导的query结构分析

trietree

现在市面上有各种各样的智能音箱,那他们的对话功能是怎么实现的呢?
通常情况下文本类内容的需求都是采用类似搜索引擎的文本相似度检索方式;其他非文本类精准需求例如定个闹铃/听个歌曲等,需要对query进行更深度的识别和解析才能更好的满足。
本文针对后者,介绍一种基于规则推导的query结构分析方法,它基于Trie Tree,实现对用户提问query的需求识别和问题的结构化解析。我们称这类模块为DA,通常包含需求识别(trigger)、需求解析(parser)、需求发现(discovery)等。 阅读全文

小猪学Darknet—基于C的深度学习框架

最近在研究视频二维码定位清理,涉及到Object Detection对象检测技术,发现Darknet用起来效果不错,本文简单介绍下。先贴几个示例: 阅读全文

成长之路—《管理你的老板》读后感

最近组织结构调整,接连换了两次新领导。与陌生的新领导没有建立起认同和信任感,会遇到沟通不太顺利的时候。回想自己以前的职场工作的经历,都是先相互看顺眼才去入职,之后努力工作出业绩就好了,从来没有遇到过这类问题。想到自己也确实很不擅长向上沟通,于是经过朋友推荐买了这本书。 阅读全文

成长之路—关于996的思考

最近996被讨论的很火,大家的关注点都聚焦在那几个数字上,但对于想在职场有所成就的人来说,纠结这些数字毫无意义(无工效的加班除外)。那么应该关注的是什么呢?对于下属被舆论影响的leader来说,应该思考些什么呢? 阅读全文

小猪学AI—图像生成原理与应用

概述

最近替换视频中的人脸比较火,涉及的技术主要是图像生成,主要采用生成式对抗网络(GAN, Generative Adversarial Networks )深度学习模型。GAN是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。
本文基于Deepfakes Faceswap实现了一个简单的图片换脸过程。 阅读全文

小猪学AI—迁移学习之人脸识别

概述

想给家里的小八爪机器人加上人脸识别功能,比如瞄准的是我时就不能发射炮弹,这样儿子就没法拿这个怪物打我了。。。(也可以在工位上加个摄像头,领导来了提前报警。。。) 阅读全文

小猪学AI—强化学习之下棋高手

概述

儿子的国际象棋水平渐长,我已经逐渐下不过他了,作为陪练水平这么不堪怎么能行?!可是自己研究棋谱的时间有点少,自认成为棋协大师的概率比较低,想来想去还是参考AlphaGo Zero做个AI吧,一方面有可能训练出一个大师级的AI做儿子的陪练对棋艺的提升有所帮助,另一方面刚好自己也能顺便学习强化学习。 阅读全文

AlphaGo论文译文:用通用强化学习自我对弈,掌握国际象棋和将棋 Mastering-Chess-and-Shogi-by-Self-Play-with-a-General-Reinforcement-Learning-Algorithm

AlphaGo论文的译文:用通用强化学习自我对弈,掌握国际象棋和将棋 Mastering-Chess-and-Shogi-by-Self-Play-with-a-General-Reinforcement-Learning-Algorithm 阅读全文