小猪学AI—图像生成原理与应用

最近替换视频中的人脸比较火,涉及的技术主要是图像生成,主要采用生成式对抗网络(GAN, Generative Adversarial Networks )深度学习模型。GAN是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。 本文基于Deepfakes Faceswap实现了一个简单的图片换脸过程。 阅读全文

小猪学AI—迁移学习之人脸识别

想给家里的小八爪机器人加上人脸识别功能,比如看到是我时发射炮弹按钮就不好使,这样儿子就没法拿这个怪物打我了。。。(也可以在工位上加个摄像头,领导来了提前报警。。。) 人脸识别跟普通的图像识别还是有相似的地方,比如都是图像cnn卷积池化;但也有很多不同,比如标注数据太少,全国的身份证人脸识别,每个人只有一张照片你怎么训练。。。这就需要用到一个新的迁移学习的思路:将一个问题上训练好的模型通过简单的调整使其快速适用于一个新的问题。 阅读全文

小猪学AI—强化学习之下棋高手

儿子的国际象棋水平渐长,我已经逐渐下不过他了,作为陪练水平这么不堪怎么能行?!可是自己研究棋谱的时间有点少,自认成为棋协大师的概率比较低,想来想去还是参考AlphaGo Zero做个AI吧,一方面有可能训练出一个大师级的AI做儿子的陪练对棋艺的提升有所帮助,另一方面刚好自己也能顺便学习强化学习。 本文以我学习五子棋、国际象棋的强化学习过程为例,给大家讲解一下如何让机器在仅知道走子规则的情况下通过自我博弈成为下棋高手。 阅读全文

AlphaGo论文译文:用通用强化学习自我对弈,掌握国际象棋和将棋 Mastering-Chess-and-Shogi-by-Self-Play-with-a-General-Reinforcement-Learning-Algorithm

AlphaGo论文的译文:用通用强化学习自我对弈,掌握国际象棋和将棋 Mastering-Chess-and-Shogi-by-Self-Play-with-a-General-Reinforcement-Learning-Algorithm 阅读全文

如何用python解析cifar10数据集图片

通用图像分类公开的标准数据集常用的有CIFAR、ImageNet、COCO等,由于ImageNet数据集较大,下载和训练较慢,为了方便快速学习图像分类,我们使用CIFAR10数据集。 本文讲解如何将数据集反向重建为rgb彩色图片。 阅读全文

python skimage图像处理

skimage即是Scikit-Image。基于python脚本语言开发的数字图片处理包,比如PIL,Pillow, opencv, scikit-image等。 PIL和Pillow只提供最基础的数字图像处理,功能有限;opencv实际上是一个c++库,只是提供了python接口,更新速度非常慢。scikit-image是基于scipy的一款图像处理包,它将图片作为numpy数组进行处理,与matlab一样。 阅读全文

如何用python解析mnist图片

MNIST 数据集是一个手写数字识别训练数据集,来自美国国家标准与技术研究所National Institute of Standards and Technology (NIST)。训练集 (training set) 由来自 250 个不同人手写的数字构成,其中 50% 是高中学生,50% 来自人口普查局 (the Census Bureau) 的工作人员。测试集(test set) 也是同样比例的手写数字数据。 阅读全文

小猪学AI—CNN图像识别之手写数字

前段时间忙了好一阵,终于有时间继续学习了,今天开始通过paddlepaddle的手写数字识别看一下简单的cnn图像识别模型是怎么训练出来的。 阅读全文

LSM VS B-Tree

LSM树整个结构不是有序的,所以不知道数据在什么地方,需要从每个小的有序结构中做二分查询,找到了就返回,找不到就继续找下一个有序结构。所以说LSM牺牲了读性能。但是LSM之所以能够作为大规模数据存储系统在于读性能可以通过其他方式来提高,比如读取性能更多的依赖于内存/缓存命中率而不是磁盘读取。 阅读全文